Studies on Quinones. Part 27. ${ }^{1}$ Diels-Alder Reaction of 8,8-DimethyInaphthalene-1,4,5(8H)-trione

Jaime A. Valderrama,* Ramiro Araya-Maturana and Fernando Zuloaga
Facultad de Química, Pontificia Universidad Católica de Chile, Casilla 306, Santiago-22, Chile

Abstract

The Diels-Alder reaction of the title quinone 1 with various symmetrical and unsymmetrical dienes in ethanol solution is reported. The cycloaddition takes place, in all cases, across the external quinone double bond affording with cyclopentadiene, buta-1,3-diene and 2,3-dimethylbuta-1,3-diene, the corresponding adducts 3,4 and 5 . The cycloaddition of 1 with 2 -methylbuta-1,3-diene and penta-1,3-diene provided $90: 10$ and $65: 35$ mixtures of regioisomers 6-7 and 17-18, respectively. Enolisation of these adduct mixtures afforded the corresponding anthracenones 10-11 and 21-22. Compounds 11 and 22, the minor components of the anthracenone mixtures, were synthesized from acetylnaphthalenes 14 and 23.

The reaction of 1 with (E)-1-trimethylsilyloxybuta-1,3-diene yielded exclusively adduct 19 and with $(E)-1$-methoxybuta-1,3-diene gave a mixture of compounds 28, 31 and 32.

The regioselectivity of the Diels-Alder reactions of quinone 1 with 2 -methylbuta-1,3-diene and penta-1,3-diene is in agreement with that predicted by frontier molecular orbital (FMO) theory. On the basis of frontier molecular orbital interactions, compound 19 is proposed as the regioisomer generated in the reaction of 1 with the (E)-1-trimethylsilyloxybuta-1,3-diene.

In connection with studies on the synthesis of angular polycyclic quinones related to naturally occurring quinones, we have recently reported ${ }^{2}$ a regiospecific method to prepare dihydroxy-anthra- and benz-[a]anthraquinones starting from naphthalenetriones 1 and 2 . This route involves the aromatization of the cyclohexadienone ring by dienone-phenol rearrangement ${ }^{3}$ followed by extension of the ring system by the cycloaddition of (E)-1-trimethylsilyloxybuta-1,3-diene.

An alternative route to prepare anthra- and benz- $[a]$ anthraquinones from compounds 1 and 2 could be based on cycloaddition to the external quinone double bond followed by aromatisation and dienone-phenol rearrangement. The hypothesis that the cycloaddition to quinones 1 and 2 takes place across the external quinonic double bond is supported by the fact that the substituents at C-8 would be expected to prevent attack of the dienes on the internal double bond. On the other hand, considering the electron-withdrawing effect of the carbonyl group at $\mathbf{C}-5$, it is reasonable to expect regioselective control of the cycloaddition of polarised dienes.

In this communication we wish to describe the behaviour of quinone 1 in the Diels-Alder reaction with several symmetrical and unsymmetrical dienes, providing a route for the synthesis of anthracene-1,9,10-triones. The FMO (frontier molecular orbital) theoretical prediction of the preferred cycloaddition of 1 and the unsymmetrical dienes is in accord with the observed regioselectivity.

Quinone 1, prepared as reported, ${ }^{3}$ was allowed to react with an excess of cyclopentadiene at room temperature for 2 days in benzene solution to afford adduct 3 in 84% yield. The appearance in the ${ }^{1} \mathrm{H}$ NMR spectrum of two olefinic proton doublets at $\delta 6.28$ and 6.76 with $J 10 \mathrm{~Hz}$, and the absence of the quinone protons of substrate 1 , indicates that the addition took place across the external quinone double bond.

Under similar conditions, quinone 1 reacted with buta-1,3diene and 2,3-dimethylbuta-1,3-diene to afford, after 3 days, the corresponding adducts 4 and 5 . It is noteworthy that adduct 3 was easily purified through a silica gel column. Adducts 4 and 5 , however, underwent enolisation to the corresponding anthracenones 8 and 9 under these conditions. Dihydroxyanthracenones 8 and 9 were prepared in high yields by treatment of the corresponding adducts 4 and 5 with silica gel in benzene solution.

1

2

3

4-7

12

8-11

	R^{1}	R^{2}
4,8	H	H
5,9	Me	Me
6,10	Me	H
7,11	H	Me

Me

The behaviour of quinone 1 towards the cycloaddition of unsymmetrical dienes was first explored with 2-methylbuta-1,3diene in ethanol solution. After 5 days a mixture of adducts 6 7 was obtained in 94% yield, and the major regioisomer 6 was purified by crystallisation from a light petroleum-benzene mixture. The presence of the two regioisomers generated in this cycloaddition was indirectly established through their enolisation products 10 and 11 which were generated by treatment of the crude adducts mixture with silica gel in benzene solution. The ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture of dihydroxyanthracenones showed the signals of two chelated protons at $\delta 13.19$ and 13.17 in a $90: 10$ ratio. The major dihydroxyanthracenone 10 was purified by crystallisation from benzene and was then oxidised with active manganese dioxide ${ }^{4}$ to anthracenetrione 12.
The structures of dihydroxyanthracenone 10 and anthra-
cenetrione 12 were established by comparison of their properties (m.p.s, IR, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR) with those of dihydroxyanthracenone 11 and anthracenetrione 13 which were prepared according to the sequence of steps outlined in Scheme 1. Compound 14, prepared as reported, ${ }^{5}$ was oxidised

Scheme 1 Reagents: i, $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii, N -(2-methylprop-1-enyl)morpholine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, H^{+}, EtOH ; iv, MnO_{2}
with manganese dioxide ${ }^{6}$ in dichloromethane solution to give the unstable quinone 15 in 98% yield. The reaction of 15 with the N-(2-methylprop-1-enyl)morpholine afforded heterocycle 16 in 74% yield which by acid-induced rearrangement provided anthracenone 11 in 70% yield. Finally, oxidation of 11 with active manganese dioxide gave anthracenetrione 13 in 91% yield.

We also studied the Diels-Alder reaction of quinone 1 with penta-1,3-diene under the usual conditions. The treatment afforded a $65: 35$ mixture of adducts 17 and 18 which was evaluated by ${ }^{1} \mathrm{H}$ NMR spectroscopy using the signals of the methyl groups at $\delta 1.23$ and 1.28 . The mixture of adducts $17-$ 18 was converted into the mixture of dihydroxyanthracenones $21-22$ by treatment with silica gel in benzene solution. The ${ }^{1} \mathrm{H}$ NMR spectrum of the latter mixture showed the signals of the chelated protons at $\delta 13.20$ and 13.45.

The identity of the dihydroxyanthracenones 21 and 22, which were not separated, was established by comparison of the ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture with the ${ }^{1} \mathrm{H}$ NMR spectrum of
pure dihydroxyanthracenone 22. Compound 22 was synthesised from acetylnaphthalene $23^{5.7}$ by oxidation with manganese dioxide affording the unstable quinone 24 which was treated with N-(2-methylprop-1-enyl)morpholine to provide heterocycle 25 . Subsequent acid-induced rearrangement of 25 gave naphthalenone 22 (Scheme 1).

The ${ }^{1} \mathrm{H}$ NMR spectrum of dihydroxyanthracenone 22 displays the signal of the chelated proton at $\delta 13.45$ in agreement with the signal of the chelated proton of the minor dihydroxynaphthalenone in the mixture. This indicates that cycloaddition of 1 and penta-1,3-diene gave a $65: 35$ mixture of adducts 17 and 18 , respectively.

We also examined the Diels-Alder reaction of 1 with the electron-rich dienes: (E)-1-trimethylsilyloxybuta-1,3-diene and (E)-1-methoxybuta-1,3-diene. Cycloaddition with the former afforded exclusively adducts 19 or 20 in 90% yield. We attempted to convert adducts 19 or 20 into hydroxyquinones $\mathbf{2 6}$ or 27 which by dienone-phenol rearrangement might provide dihydroxyquinone 29 , or its isomer 30 which we have obtained previously. ${ }^{2}$ However, by subjecting the adduct to mild acidic conditions, anthracenone 31 was obtained in 96% yield. Aromatisation of adduct 19 or 20 was also attempted with 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ). However, elimination of the silyloxy group proceeded easily during the oxidation to afford anthracenetrione 28 in 98% yield.

26-28

29, 30

	R^{1}	R^{2}
26,29	H	OH
27,30	OH	H
28	H	H

31

32

The cycloaddition of 1 with (E)-1-methoxybuta-1,3-diene gave a mixture of compounds 28,31 and 32 which were isolated by column chromatography on silica gel. It is reasonable to deduce that the Diels-Alder adduct generated in the cycloaddition undergoes a facile enolisation-aromatisation to give anthracenone 31 , which through a redox reaction with 1 , affords anthracenetrione 28 and naphthalenone 32.

The remarkable regioselectivity of the cycloaddition of quinone 1 with unsymmetrical dienes led us to analyse these reactions in terms of frontier molecular orbital (FMO) theory. ${ }^{8}$ Fig. 1 shows the LUMO coefficients of quinone 1 and the HOMO coefficients of the dienes, calculated by the semiempirical AM1 method. These calculations indicate that quinone 1 possesses the highest LUMO coefficients at the internal double bond. Nevertheless, as was experimentally observed in all the cycloadditions, the reactions occur at the external quinone double bond due to the presence of the geminal methyl groups that prevent the approach of the dienes to the internal double bond.

It is interesting to note that the calculations indicate for

Fig. 1 LUMO coefficients of quinone 1 and HOMO coefficients of 2-methylbuta-1,3-diene, penta-1,3-diene and (E)-1-trimethylsilyloxybuta-1,3-diene performed by AM1 method
quinone 1 a small difference between the LUMO coefficients at C-2 and C-3, and a large difference between those at C-1 and C-4.

For the reaction of 1 with 2-methylbuta-1,3-diene the calculations indicate that the primary LUMO/HOMO interactions favour the regioisomer 6; this prediction agrees with the experimental result of $90: 10$ preference for adduct 6 .

For penta-1,3-diene the calculations show that the primary HOMO coefficients are nearly of the same magnitude, therefore the secondary LUMO/HOMO orbital ${ }^{9}$ interactions favour the regioisomer 17. This prediction agrees with the experimental results of 65:35 preference for adduct 17.

For the reaction of 1 with (E)-1-trimethylsilyloxybuta-1,3diene, the calculation shows that the HOMO of the diene, which contains the strong π-donor OSiMe_{3} group, is heavily concentrated on the 2 -and 4 -positions. This fact, along with the magnitude of the coefficient at C-1 of the LUMO of 1 which significantly exceeds that at $\mathrm{C}-4$, leads to the prediction that adduct 19 is the favoured regioisomer generated through a transition state allowed by primary and secondary orbital interactions.

In summary, the cycloaddition of quinone 1 with dienes took place through the external quinone double bond and is highly regiocontrolled with polarised unsymmetrical dienes. The regiochemistry of these cycloadditions, which is in accord with that predicted by FMO theory, is potentially applicable to the synthesis of anthra- and benz-[a]anthraquinones. The extension of these results to quinone 2 and the cycloaddition of 1-aza dienes to quinones $\mathbf{1}$ and $\mathbf{2}$ is under investigation.

Experimental

M.p.s were measured on a Koffer hot-stage apparatus and are uncorrected. Unless otherwise stated IR spectra were recorded on a Perkin-Elmer 1310 spectrophotometer; ${ }^{1} \mathrm{H}$ NMR spectra were obtained on a Varian XL-100 or Bruker AC-200P spectrometers. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AM-200 or Varian XL-300 spectrometers. Samples were dissolved in CDCl_{3}, chemical shifts are expressed in $\mathrm{ppm}(\delta)$, downfield from SiMe_{4} and coupling constants (J) are given in Hz . Mass spectra were recorded on a VG-12-250 spectrometer. Silica gel Merck 60 ($70-230$ mesh) and DC-Alufolien $60 \mathrm{~F}_{254}$ were used for preparative column and analytical TLC, respectively.

Reaction of Quinone 1 with Cyclopentadiene.-A solution of compound $1^{3}(172 \mathrm{mg}, 0.85 \mathrm{mmol})$ and freshly distilled cyclopentadiene ($57 \mathrm{mg}, 0.86 \mathrm{mmol}$) in ethanol $\left(5 \mathrm{~cm}^{3}\right)$ was left at room temperature for 2 days. Evaporation of the solvent
followed by purification of the crude residue by filtration over silica gel (CHCl_{3}) afforded 5,8 -methano-4,4-dimethyl- $5,8,8 \mathrm{a}$,-10a-tetrahydroanthracene-1,9,10(4H)-trione 3 ($190 \mathrm{mg}, 84 \%$), m.p. $100-102^{\circ} \mathrm{C}$ (benzene) (Found: C, 76.1; H, 6.2. $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3}$ requires C, 76.1; H, 6.0\%); $v_{\text {max }} / \mathrm{cm}^{-1} 1700,1675$ and 1656 ; $\delta_{\mathrm{H}}(100 \mathrm{MHz}) 1.45(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{Me}), 1.48\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{Me}^{\prime}\right)$, $1.52-$ $1.72\left(\mathrm{~m}, 2 \mathrm{H}, 11-\mathrm{CH}_{2}\right), 3.36-3.60(\mathrm{~m}, 4 \mathrm{H}, 5-\mathrm{H}, 8-\mathrm{H}, 8 \mathrm{a}-\mathrm{H}$ and $10 \mathrm{a}-\mathrm{H}), 6.00-6.23(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}$ and $7-\mathrm{H}), 6.28(\mathrm{~d}, 1 \mathrm{H}, J 10$, $2-\mathrm{H})$ and $6.76(\mathrm{~d}, 1 \mathrm{H}, J 10,3-\mathrm{H})$.

Reaction of Quinone 1 with Buta-1,3-diene.-Butadiene was bubbled for 3 min through a solution of the quinone $1(200 \mathrm{mg}$, 1 mmol) in ethanol ($10 \mathrm{~cm}^{3}$), and the mixture was left in a sealed flask at room temperature for 3 days. Evaporation of the solvent afforded 4,4-dimethyl-5,8,8a,10a-tetrahydroanthracene-1,9,10(4 H)-trione $4(248 \mathrm{mg}, 97 \%)$ as a pale yellow solid, m.p. $105-$ $107^{\circ} \mathrm{C}$ [benzene-light petroleum (b.p. $40-60^{\circ} \mathrm{C}$)] (Found: C, $75.0 ; \mathrm{H}, 6.2 . \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}$ requires C, $75.0 ; \mathrm{H}, 6.3 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ 1705 and $1445 ; \delta_{\mathrm{H}}(100 \mathrm{MHz}) 1.50\left(\mathrm{~s}, 6 \mathrm{H}, 4-\mathrm{Me}_{2}\right), 2.00-2.70(\mathrm{~m}$, $4 \mathrm{H}, 5-\mathrm{H}$ and $8-\mathrm{H}), 3.10-3.60(\mathrm{~m}, 2 \mathrm{H}, 8 \mathrm{a}-\mathrm{H}$ and $10 \mathrm{a}-\mathrm{H}), 5.73$ (br s, $2 \mathrm{H}, 6-\mathrm{H}$ and $7-\mathrm{H}$), 6.23 (d, $1 \mathrm{H}, J 10,2-\mathrm{H}$) and $6.84(\mathrm{~d}, 1$ $\mathrm{H}, \mathrm{J} 10,3-\mathrm{H}$).

Reaction of Quinone 1 with 2,3-Dimethylbuta-1,3-diene.-A solution of quinone $1(200 \mathrm{mg}, 1 \mathrm{mmol})$ and the diene $(150 \mathrm{mg}$, 1.8 mmol) in ethanol ($10 \mathrm{~cm}^{3}$) was kept at room temperature for 3 days. The solvent was removed to give 4,4,6,7-tetramethyl5,8,8a, 10a-tetrahydroanthracene-1,9,10(4H)-trione 5 (280 mg , 99%) as a pale yellow solid, m.p. $108-111^{\circ} \mathrm{C}$ [benzene-light petroleum (b.p. $40-60^{\circ} \mathrm{C}$)] (Found: C, 76.4; H, 7.3. $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3}$ requires $\mathrm{C}, 76.0 ; \mathrm{H}, 7.1 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1715,1670$ and 1650 ; $\delta_{\mathrm{H}}(100 \mathrm{MHz}) 1.51\left(\mathrm{~s}, 6 \mathrm{H}, 8-\mathrm{Me}_{2}\right), 1.64$ (br s, $6 \mathrm{H}, 6-\mathrm{Me}$ and $7-$ $\mathrm{Me}), 1.89-2.61(\mathrm{~m}, 4 \mathrm{H}, 5-\mathrm{H}$ and $8-\mathrm{H}), 3.12-3.54(\mathrm{~m}, 2 \mathrm{H}, 8 \mathrm{a}-\mathrm{H}$ and $10 \mathrm{a}-\mathrm{H}), 6.32(\mathrm{~d}, 1 \mathrm{H}, J 10,2-\mathrm{H})$ and $6.83(\mathrm{~d}, 1 \mathrm{H}, J 10,3-\mathrm{H})$.

9,10-Dihydroxy-4,4-dimethyl-5,8-dihydroanthracen-1(4H)one 8.-A solution of adduct $4(250 \mathrm{mg}, 0.98 \mathrm{mmol})$ and silica gel (3 g) in benzene ($10 \mathrm{~cm}^{3}$) was stirred overnight at room temperature. The mixture was filtered and the solid was washed with dichloromethane. Evaporation of the solvent gave anthracenone 8 ($230 \mathrm{mg}, 92 \%$) as a yellow solid, m.p. 225$228^{\circ} \mathrm{C}$ (benzene) (Found: C, $75.1 ; \mathrm{H}, 5.9 . \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}$ requires C, $75.0 ; \mathrm{H}, 6.2 \%) ; v_{\max } / \mathrm{cm}^{-1} 3400,1645,1615$ and $1585 ; \delta_{\mathrm{H}}(100$ MHz) $1.62\left(\mathrm{~s}, 6 \mathrm{H}, 4-\mathrm{Me}_{2}\right.$), 3.20 (br s, $4 \mathrm{H}, 5-\mathrm{H}$ and $8-\mathrm{H}$), 4.48 (br s, $1 \mathrm{H}, \mathrm{OH}$), $5.76-6.12(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}$ and $7-\mathrm{H}$), $6.25(\mathrm{~d}, 1 \mathrm{H}, J$ $10,2-\mathrm{H}), 6.85(\mathrm{~d}, 1 \mathrm{H}, J 10,3-\mathrm{H})$ and $13.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$; δ_{C} 23.30, 24.32, 25.21, 37.85, 111.78, 120.45, 122.76, 123.26, 133.29, 133.34, 143.87, 153.57, 161.89 and 190.86 .

9,10-Dihydroxy-4,4,6,7-tetramethyl-5,8-dihydroanthracen$1(4 \mathrm{H})$-one 9.-A mixture of adduct $5(200 \mathrm{mg}, 0.7 \mathrm{mmol})$ and silica gel (3 g) in benzene solution ($15 \mathrm{~cm}^{3}$) was stirred for 3 h at room temperature. Work-up in the usual way afforded anthracenone 9 ($190 \mathrm{mg}, 95 \%$), m.p. 211-213 ${ }^{\circ} \mathrm{C}$ (benzene) (Found: C, $76.0 \mathrm{H}, 7.2 . \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3}$ requires C, $76.0 ; \mathrm{H}, 7.1 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3415,1640,1610$ and $1585 ; \delta_{\mathrm{H}}(100 \mathrm{MHz}) 1.60(\mathrm{~s}$, $6 \mathrm{H}, 4-\mathrm{Me}_{2}$), 1.81 ($\mathrm{s}, 6 \mathrm{H}, 6-\mathrm{Me}$ and 7-Me), 3.04-3.34 (m, 4 H , $5-\mathrm{H}$ and $8-\mathrm{H}), 6.25(\mathrm{~d}, 1 \mathrm{H}, J 10,2-\mathrm{H}), 6.82(\mathrm{~d}, 1 \mathrm{H}, J 10,3-\mathrm{H})$, $7.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$ and $13.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; \delta_{\mathrm{c}} 18.24,18.40,24.41$, $24.81,30.08,31.96,38.94,111.60,121.07,123.24,132.94,133.92$, 143.43, 153.19, 161.88 and 190.88 .

Reaction of Quinone 1 with 2-Methylbuta-1,3-diene.-A solution of quinone $1(490 \mathrm{mg}, 2.42 \mathrm{mmol})$ and the diene (240 $\mathrm{mg}, 3.5 \mathrm{mmol}$) in ethanol ($10 \mathrm{~cm}^{3}$) was left at room temperature for 5 days. Removal of the solvent afforded a mixture of 4,4,7-trimethyl- and 4,4,6-trimethyl-5,8,8a, 10a-tetrahydroanthra-cene-1,9,10(4H)-trione 6 and 7 in a $90: 10$ ratio ($620 \mathrm{mg}, 94 \%$).

An analytical sample of the major regioisomer 6 was obtained by crystallisation from a $1: 1$ benzene-light petroleum mixture, m.p. $88-90^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 75.2 ; \mathrm{H}, 6.6 . \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$ requires C , $75.5 ; \mathrm{H}, 6.7) ; v_{\max } / \mathrm{cm}^{1} 1705,1685$ and $1655 ; \delta_{\mathrm{H}}(100 \mathrm{MHz})$ 1.47 ($\mathrm{s}, 3 \mathrm{H}, 4-\mathrm{Me}$), 1.50 ($\mathrm{s}, 3 \mathrm{H}, 4-\mathrm{Me}^{\prime}$), 1.70 (br s, $3 \mathrm{H}, 7-\mathrm{Me}$), $1.88-2.60(\mathrm{~m}, 4 \mathrm{H}, 5-\mathrm{H}$ and $8-\mathrm{H}), 3.06-3.56(\mathrm{~m}, 2 \mathrm{H}, 8 \mathrm{a}-\mathrm{H}$ and $10 \mathrm{a}-\mathrm{H}), 5.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 6-\mathrm{H}), 6.30(\mathrm{~d}, 1 \mathrm{H}, J 10,2-\mathrm{H})$ and 6.78 (d, $1 \mathrm{H}, J 10,3-\mathrm{H}$).

9,10-Dihydroxy-4,4,7-trimethyl-5,8-dihydroanthracen-1 $(4 \mathrm{H})$ one 10 . -A suspension of adducts $6-7(600 \mathrm{mg}, 2.22 \mathrm{mmol})$ and silica gel (3 g) in benzene ($10 \mathrm{~cm}^{3}$) was stirred for 2 h at room temperature. The mixture was filtered and the solid was washed with dichloromethane. Evaporation of the solvent gave a $90: 10$ mixture of anthracenones 10 and $11(540 \mathrm{mg}, 90 \%)$ evaluated by ${ }^{1} \mathrm{H}$ NMR spectroscopy at 300 MHz . An analytical sample of anthracenone 10 was obtained by crystallisation from benzene, m.p. 222-223 ${ }^{\circ} \mathrm{C}$ (Found: 75.3; H, 6.4. $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$ requires C , $75.6 ; \mathrm{H}, 6.6 \%) ; \nu_{\max } / \mathrm{cm}^{-1} 3320,1645,1610$ and $1580 ; \delta_{\mathrm{H}}(100$ MHz) 1.64 ($\mathrm{s}, 6 \mathrm{H}, 4-\mathrm{Me}_{2}$), 1.88 (br s, 3 H, 7-Me), 3.14-3.54 (m, $4 \mathrm{H}, 5-\mathrm{H}$ and $8-\mathrm{H}$), 5.64 (br s, $1 \mathrm{H}, 6-\mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 6.29$ (d, $1 \mathrm{H}, J 10,2-\mathrm{H}), 6.91(\mathrm{~d}, 1 \mathrm{H}, J 10,3 \mathrm{H})$ and $13.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$; $\delta_{\mathrm{C}} 22.90,24.70,24.80,26.15,28.09,37.86,111.78,116.97$, $120.75,123.24,130.06,133.17,133.24,143.83,153.43,162.00$ and 190.89 .

4,4,7-Trimethylanthracene-1,9,10(4H)-trione 12.-A mixture of anthracenone $10(220 \mathrm{mg}, 0.81 \mathrm{mmol})$ and active manganese dioxide ${ }^{4}(600 \mathrm{mg})$ in benzene ($30 \mathrm{~cm}^{3}$) was refluxed in a DeanStark apparatus for 3 h . The solution was filtered, the solids were washed with dichloromethane and the filtrate was evaporated under reduced pressure to afford compound 12 (200 $\mathrm{mg}, 93 \%$), m.p. $138-140^{\circ} \mathrm{C}$ (Found: 76.6; H, 5.4. $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{3}$ requires $\mathrm{C}, 76.1 ; \mathrm{H}, 5.3$); $v_{\max } / \mathrm{cm}^{-1} 1680,1655$ and 1640 ; $\delta_{\mathrm{H}}(100 \mathrm{MHz}) 1.66\left(\mathrm{~s}, 6 \mathrm{H}, 4-\mathrm{Me}_{2}\right), 2.54(\mathrm{~s}, 3 \mathrm{H}, 7-\mathrm{Me}), 6.41(\mathrm{~d}$, $1 \mathrm{H}, J 10,2-\mathrm{H}), 6.90(\mathrm{~d}, 1 \mathrm{H}, J 10,3-\mathrm{H}), 7.60(\mathrm{dd}, 1 \mathrm{H}, J 8$ and 2 , $6-\mathrm{H}), 7.88(\mathrm{~d}, 1 \mathrm{H}, J 2,8-\mathrm{H})$ and $8.00(\mathrm{~d}, 1 \mathrm{H}, J 8,5-\mathrm{H})$.

2-Acetyl-6-methyl-5,8-dihydronaphthalene-1,4-dione 15.Compound $14^{5}(600 \mathrm{mg}, 2.71 \mathrm{mmol})$ and manganese dioxide ${ }^{6}$ $(190 \mathrm{mg})$ in dichloromethane ($30 \mathrm{~cm}^{3}$) were stirred vigorously for 25 min at room temperature. The resulting mixture was filtered and the filtrate was concentrated to give the unstable quinone 15 ($580 \mathrm{mg}, 98 \%$) which was used immediately in the next preparation; $v_{\text {max }} / \mathrm{cm}^{-1} 1698,1655$ and $1645 ; \delta_{\mathrm{H}}(100$ MHz) 1.79 ($\mathrm{s}, 3 \mathrm{H}, 6-\mathrm{Me}$), 2.56 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{COMe}$), 2.82-3.31 (m, $4 \mathrm{H}, 5-\mathrm{H}$, and $8-\mathrm{H}), 5.44-5.64(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H})$ and $6.94(\mathrm{~s}, 1 \mathrm{H}$, $3-\mathrm{H}$).

4-Acetyl-5-hydroxy-3,3,8-trimethyl-2-morpholino-6,9-dihy-

 dronaphtho $[1,2-\mathrm{b}]$ furan 16 .-A solution of quinone $15(540 \mathrm{mg}$, 2.68 mmol) in dichloromethane ($30 \mathrm{~cm}^{3}$) was added dropwise to a cooled solution $\left(0-5^{\circ} \mathrm{C}\right)$ of N -(2 -methylprop-1-enyl)morpholine ($380 \mathrm{mg}, 2.7 \mathrm{mmol}$) in dichloromethane ($25 \mathrm{~cm}^{3}$) and the resulting red solution was left for 1 h at ambient temperature. The solvent was removed and the residue, which solidified upon cooling, was washed with light petroleum to give heterocycle 16 ($710 \mathrm{mg}, 74 \%$), m.p. $163-165^{\circ} \mathrm{C}$ [benzene-light petroleum (1:1)] (Found: C, 70.7; H, 7.3; N, 3.7. $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{4}$ requires $\mathrm{C}, 70.6 ; \mathrm{H}, 7.6 ; \mathrm{N}, 3.9 \%$); $v_{\max } / \mathrm{cm}^{-1} 3240$ and 1675 ; $\delta_{\mathrm{H}}(100 \mathrm{MHz}) 1.40(\mathrm{~s}, 3 \mathrm{H}, 3-\mathrm{Me})$, 1.48 (s, $3 \mathrm{H}, 3-\mathrm{Me}^{\prime}$), 1.85 (s, $3 \mathrm{H}, 8-\mathrm{Me}), 2.28-2.80(\mathrm{~m}, 4 \mathrm{H}, 6-\mathrm{H}$ and $9-\mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}$, COMe), $3.20\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{N}\right.$), $3.62\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}\right.$), 4.73 (s , $1 \mathrm{H}, 2-\mathrm{H})$ and $5.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH})$.9,10-Dihydroxy-4,4,6-trimethyl-5,8-dihydroanthracen-1(4H)one 11.-A solution of compound $16(340 \mathrm{mg}, 1.02 \mathrm{mmol})$ in ethanol ($10 \mathrm{~cm}^{3}$) containing concentrated hydrochloric acid
($0.3 \mathrm{~cm}^{3}$) was refluxed for 25 min . The mixture was poured into ice-water and the precipitate was filtered off to afford anthracenone 11 ($170 \mathrm{mg}, 70 \%$), m.p. $216-218^{\circ} \mathrm{C}$ (benzene) (Found: $\mathrm{C}, 75.5 ; \mathrm{H}, 6.6 . \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.6 ; \mathrm{H}, 6.6 \%$); $v_{\max } / \mathrm{cm}^{1} 3410,1640$ and $1580 ; \delta_{\mathrm{H}}(100 \mathrm{MHz}) 1.64(\mathrm{~s}, 6 \mathrm{H}$, $4-\mathrm{Me}_{2}$), 1.88 (br s, $3 \mathrm{H}, 6-\mathrm{Me}$), 3.14-3.54 (m, $4 \mathrm{H}, 5-\mathrm{H}$ and $8-\mathrm{H}$), 5.64 (br s, $1 \mathrm{H}, 7-\mathrm{H}$), $6.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 6.29$ (d, $1 \mathrm{H}, J 10,2-\mathrm{H}$), $6.91(\mathrm{~d}, 1 \mathrm{H}, J 10,3-\mathrm{H})$ and $13.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ; \delta_{\mathrm{C}} 23.07,24.22$, 24.72, 24.80, 24.99, 37.88, 111.70, 117.60, 120.37, 129.49, 123.26, $133.35,133.65,143.69,153.55,161.98$ and 190.92 .

4,4,6-Trimethylanthracene-1,9,10(4H)-trione 13.-A mixture of anthracenone $11(200 \mathrm{mg}, 0.74 \mathrm{mmol})$ and active manganese dioxide ${ }^{4}$ (550 mg) in benzene ($30 \mathrm{~cm}^{3}$) was refluxed in a DeanStark apparatus for 3 h . The solution was filtered, the solids were washed with dichloromethane and the filtrate was evaporated under reduced pressure to afford compound 13 (180 $\mathrm{mg}, 91 \%$), m.p. $184-185^{\circ} \mathrm{C}$ (Found: 77.0; H, 5.2. $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{3}$ requires C, $76.7 ; \mathrm{H}, 5.3 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1690,1665$ and 1635 ; $\delta_{\mathrm{H}}(100 \mathrm{MHz}) 1.66\left(\mathrm{~s}, 6 \mathrm{H}, 4-\mathrm{Me}_{2}\right), 2.54(\mathrm{~s}, 3 \mathrm{H}, 7-\mathrm{Me}), 6.41(\mathrm{~d}$, $1 \mathrm{H}, J 10,2-\mathrm{H}), 6.90(\mathrm{~d}, 1 \mathrm{H}, J 10,3-\mathrm{H}), 7.60(\mathrm{dd}, 1 \mathrm{H}, J 8$ and 2 , $6-\mathrm{H}), 7.88(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 8-\mathrm{H})$ and $8.00(\mathrm{~d}, 1 \mathrm{H}, J 8,5-\mathrm{H})$.

Reaction of Quinone 1 with Penta-1,3-diene.-A solution of quinone $1(340 \mathrm{mg}, 1.68 \mathrm{mmol})$ and the diene $\left(0.25 \mathrm{~cm}^{3}, 2.5\right.$ mmol) in ethanol ($10 \mathrm{~cm}^{3}$) was left at room temperature for 4 days. Removal of the solvent gave a $65: 35$ mixture of $4,4,5-$ trimethyl-5,8,8a, 10a-tetrahydroanthracene-1,9,10(4H)-trione
17 and 4,4,8-trimethyl-5,8,8a,10a-tetrahydroanthracene$1,9,10(4 H)$-trione 18 as an oily liquid; $v_{\text {max }} / \mathrm{cm}^{-1} 1710,1676$ and $1640 ; \delta_{\mathrm{H}}(100 \mathrm{MHz}) 0.92(\mathrm{~d}, 1.95 \mathrm{H}, J 7,5-\mathrm{Me}), 1.12(\mathrm{~d}, 1.15 \mathrm{H}, J 7$, $8-\mathrm{Me}), 1.50,1.53$ and $1.58\left(3 \mathrm{~s}, 6 \mathrm{H}, 4-\mathrm{Me}_{2}\right), 1.92-2.88(\mathrm{~m}, 3 \mathrm{H}, 5-\mathrm{H}$ and $8-\mathrm{H}), 3.23-3.63(\mathrm{~m}, 2 \mathrm{H}, 8 \mathrm{a}-\mathrm{H}$ and $10 \mathrm{a}-\mathrm{H}), 5.58-5.76(\mathrm{~m}, 2 \mathrm{H}$, $6-\mathrm{H}$ and $7-\mathrm{H}), 6.33(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J} 10,2-\mathrm{H})$ and $6.65(\mathrm{~d}, 1 \mathrm{H}, J 10,3-\mathrm{H})$.

9,10-Dihydroxy-4,4,5-trimethyl-5,8-dihydro- and 9,10-Dihy-droxy-4,4,8-trimethyl-5,8-dihydro-anthracen- $1(4 \mathrm{H})$-one 21 and 22.-The 65:35 mixture of adducts 17 and $\mathbf{1 8}(\mathbf{4 4 0} \mathrm{mg}, 1.63$ mmol) and silica gel (2 g) in benzene ($10 \mathrm{~cm}^{3}$) was stirred for 2 h . The solution was filtered and the solids were washed with dichloromethane. Removal of the solvent afforded a 70:30 mixture of anthracenones 21 and 22 as a yellow solid $(400 \mathrm{mg}$, 91% (Found: C, 75.6; H, 6.6. $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$ requires C, $75.5 ; \mathrm{H}$, $6.7 \%) ; v_{\max } / \mathrm{cm}^{-1} 3440,1640,1610$ and $1580 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 1.27$ (d, 2.1 H, J 7, 8-Me), 1.29 (d, $0.9 \mathrm{H}, J 7,5-\mathrm{Me}$), 1.59 ($\mathrm{s}, 0.9 \mathrm{H}, 4-$ $\mathrm{Me}), 1.60(\mathrm{~s}, 2.1 \mathrm{H}, 4-\mathrm{Me}), 1.62\left(\mathrm{~s}, 0.9 \mathrm{H}, 4-\mathrm{Me}^{\prime}\right), 1.63(\mathrm{~s}, 2.1 \mathrm{H}$, $\left.4-\mathrm{Me}^{\prime}\right), 3.05-3.60(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}$ and $8-\mathrm{H}), 3.51(\mathrm{~m}, 2.1 \mathrm{H}, 5-\mathrm{H})$, $3.70(\mathrm{~m}, 0.9 \mathrm{H}, 8-\mathrm{H}), 4.35(\mathrm{~s}, 0.9 \mathrm{H}, \mathrm{OH}), 4.49(\mathrm{~s}, 2.1 \mathrm{H}, \mathrm{OH})$, $5.80-6.05(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}$ and $7-\mathrm{H}), 6.24(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J} 10,2-\mathrm{H}), 6.80$ (d, $0.3 \mathrm{H}, J 10,2-\mathrm{H}), 6.82(\mathrm{~d}, 0.7 \mathrm{H}, J 10,2-\mathrm{H}), 13.12(\mathrm{~s}, 0.7 \mathrm{H}$, OH) and $13.23(\mathrm{~s}, 0.3 \mathrm{H}, \mathrm{OH})$.

3-Acetyl-5-methyl-5,8-dihydronaphthalene-1,4-dione 24.-A solution of acetylnaphthalene $23^{5,7}(310 \mathrm{mg}, 1.42 \mathrm{mmol})$ and manganese dioxide ${ }^{6}(1.25 \mathrm{~g})$ in dichloromethane $\left(25 \mathrm{~cm}^{3}\right)$ was stirred vigorously for 30 min at room temperature. The mixture was evaporated to afford crude quinone $24(300 \mathrm{mg}, \mathbf{9 8 \%}$). This unstable compound was used immediately in the next preparation; $v_{\max } / \mathrm{cm}^{-1} 1690$ and $1650 ; \delta_{\mathrm{H}}(100 \mathrm{MHz}) 1.20$ (d, $3 \mathrm{H}, J 7,5-\mathrm{Me}$), 2.55 (s, $3 \mathrm{H}, \mathrm{COMe}$), 2.93-3.26(m, $2 \mathrm{H}, 8-\mathrm{H}$), 3.28-3.62 (m, 1 H, 5-H), 5.62-5.09 (m, $2 \mathrm{H}, 6-\mathrm{H}$ and $7-\mathrm{H})$ and 7.39 (s, $1 \mathrm{H}, 2-\mathrm{H})$.

4-Acetyl-5-hydroxy-3,3,6-trimethyl-2-morpholino-6,9-dihy-dronaphtho[1,2-b] furan 25.-A solution of compound 24 (308 $\mathrm{mg}, 1.42 \mathrm{mmol}$) in dichloromethane ($15 \mathrm{~cm}^{3}$) was added dropwise to a cooled solution $\left(0-5^{\circ} \mathrm{C}\right)$ of N -(2 -methylprop-1enyl)morpholine ($220 \mathrm{mg}, 1.56 \mathrm{mmol}$) in dichloromethane (10
cm^{3}) and the mixture was left at room temperature for 2 h . Removal of the solvent afforded a red oily liquid which was poured into diethyl ether-light petroleum ($1: 1 ; 30 \mathrm{~cm}^{3}$) and cooled at $0-5^{\circ} \mathrm{C}$ for 24 h . The precipitate was filtered off to afford $25(270 \mathrm{mg}, 53 \%)$ as a $1: 4$ mixture of two epimers (evaluated by ${ }^{1} \mathrm{H}$ NMR spectroscopy). A pure sample of the mixture was obtained by recrystallisation from diethyl etherchloroform (1:1) (Found: $\mathrm{M}^{+}, 357.1930 . \mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{4}$ requires $M, 357.1940)$; $v_{\max } / \mathrm{cm}^{-1} 3300$ and $1685 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 1.23$ (d, $0.6 \mathrm{H}, J 7,9-\mathrm{Me}$), 1.28 (d, $\left.2.4 \mathrm{H}, J 7,9-\mathrm{Me}^{\prime}\right)$, 1.42 (s, $3 \mathrm{H}, 3-\mathrm{Me}$), 1.46 (s, $3 \mathrm{H}, 3-\mathrm{Me}$), $2.28-2.80\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{N}\right.$ and $9-\mathrm{H}$), 2.64 (s, $3 \mathrm{H}, \mathrm{COMe}$), 3.28 (br s, $2 \mathrm{H}, 6-\mathrm{H}$), $3.62\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J} 5, \mathrm{CH}_{2}-\mathrm{O}\right.$), $4.71(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H})$ and $5.92(\mathrm{~m}, 2 \mathrm{H}, 7-\mathrm{H}$ and $8-\mathrm{H})$.

9,10-Dihydroxy-4,4,8-trimethyl-5,8-dihydroanthracen-1 (4H)one 22.-A solution of heterocycle $25(250 \mathrm{mg}, 0.64 \mathrm{mmol})$ and hydrochloric acid ($25 \% ; 0.25 \mathrm{~cm}^{3}$) in ethanol ($10 \mathrm{~cm}^{3}$) was refluxed for 2 h . The mixture was poured into water $\left(150 \mathrm{~cm}^{3}\right)$ and extracted with chloroform ($2 \times 30 \mathrm{~cm}^{3}$) and the organic extracts were washed consecutively with water, aq. hydrogen carbonate and water and dried $\left(\mathrm{MgSO}_{4}\right)$. The chloroform was removed and the residue was chromatographed on silica gel (chloroform) to afford anthracenone $22(67 \mathrm{mg}, 39 \%$), m.p. $194-196^{\circ} \mathrm{C}$ (benzene) (Found: M^{+}, 270.1257. $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $M, 270.1247$); $v_{\text {max }} / \mathrm{cm}^{-1} 3360,1650,1610$ and 1580 ; $\delta_{\mathbf{H}}(200 \mathrm{MHz}) 1.29(\mathrm{~d}, 3 \mathrm{H}, J 7,8-\mathrm{Me}), 1.59(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{Me}), 1.62$ (s, $3 \mathrm{H}, 4-\mathrm{Me}^{\prime}$), $3.05-3.20(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}$), 3.71 (m, $1 \mathrm{H}, 8-\mathrm{H}), 4.36$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 5.80-6.05(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}$ and $7-\mathrm{H}), 6.23(\mathrm{~d}, 1 \mathrm{H}, J 10$, $2-\mathrm{H}), 6.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J} 10,3-\mathrm{H})$ and $13.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$.

Reaction of Quinone 1 with (E)-1-Trimethylsilyloxybuta-1,3-diene.-A solution of quinone $1(280 \mathrm{mg}, 1.38 \mathrm{mmol})$ and the diene $\left(0.3 \mathrm{~cm}^{3}\right)$ in dichloromethane ($10 \mathrm{~cm}^{3}$) was kept at room tem rature for 90 min . The solvent was removed and the residue was kept under vacuum for 2 h at $60-70^{\circ} \mathrm{C}$. The solid residue was washed with light petroleum to afford 4,4-dimethyl5 -trimethylsilyloxy-5,8,8a, 10a-tetrahydroanthracene-1,9,10(4 H) -trione 19 ($427 \mathrm{mg}, 90 \%$). An analytical sample of 19 was obtained by filtration through silica gel (benzene) followed by recrystallisation from hexane, m.p. $175-177^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 66.3$; $\mathrm{H}, 7.1 . \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{4}$ Si requires C, $66.3 ; \mathrm{H}, 7.0 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1720$, $1690,1660,1060$ and $840 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.05\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OSiMe}_{3}\right)$, 2.00 (dd, $1 \mathrm{H}, J 18$ and $7.5,8-\mathrm{H}), 2.85-3.50\left(\mathrm{~m}, 3 \mathrm{H}, 8^{\prime}-\mathrm{H}\right.$ and $10 \mathrm{a}-\mathrm{H}), 4.43(\mathrm{t}, 1 \mathrm{H}, \mathrm{J} 4.5,5-\mathrm{H}), 5.87(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}$ and $7-\mathrm{H}), 6.30$ (d, $1 \mathrm{H}, J 10,2-\mathrm{H})$ and $6.72(\mathrm{~d}, 1 \mathrm{H}, J 10,3-\mathrm{H})$.

Reaction of 19 in Acid Medium.-Compound 19 ($200 \mathrm{mg}, 0.58$ $\mathrm{mmol})$ in water-THF $\left(9: 1,5 \mathrm{~cm}^{3}\right)$ and $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ hydrochloric acid $\left(0.2 \mathrm{~cm}^{3}\right)$ was left at room temperature for 20 h . The mixture was diluted with water ($50 \mathrm{~cm}^{3}$) and extracted with chloroform $\left(2 \times 25 \mathrm{~cm}^{3}\right)$. The extracts were washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated under reduced pressure to afford 9,10 -dihydroxy-4,4-dimethylanthracen-1(4 H) -one 31 ($142 \mathrm{mg}, 96 \%$) as red crystals, m.p. $176-178{ }^{\circ} \mathrm{C}$ (Found: C, 75.7; H, 5.6. $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3}$ requires C, 75.6; H, 5.6\%); $v_{\text {max }} / \mathrm{cm}^{-1} 3200,1630$ and $1590 ; \delta_{\mathrm{H}}(100 \mathrm{MHz}) 1.70(\mathrm{~s}, 6 \mathrm{H}$, $4-\mathrm{Me}_{2}$), 5.09 (br s, $1 \mathrm{H}, \mathrm{OH}$), 6.28 (d, $1 \mathrm{H}, J 9,2-\mathrm{H}$), 6.80 (d, 1 H , $J 9,3-\mathrm{H}$), $7.30-8.00(\mathrm{~m}, 3 \mathrm{H}, 6 \mathrm{H}, 7-\mathrm{H}$ and $5-\mathrm{H}$ or $8-\mathrm{H}$), 8.50 (br d, $1 \mathrm{H}, J 8,8-\mathrm{H}$ or $5-\mathrm{H}$) and $14.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$.

Oxidation of Adduct 20 with DDQ.-A solution of $\mathbf{2 0}(98 \mathrm{mg}$, 0.28 mmol) and DDQ ($158 \mathrm{mg}, 0.69 \mathrm{mmol}$) in benzene $\left(25 \mathrm{~cm}^{3}\right)$ was refluxed for 8 h . The mixture was poured into chloroform ($50 \mathrm{~cm}^{3}$) and then washed with 10% aq. sodium hydrogen carbonate ($2 \times 15 \mathrm{~cm}^{3}$). The organic layer was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated under reduced pressure to afford 4,4-dimethylanthracene-1,9,10(4H)trione 28 ($69 \mathrm{mg}, 98 \%$); m.p. $156-158{ }^{\circ} \mathrm{C}$ (Found: C, $76.2 ; \mathrm{H}$, 5.2. $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{3}$ requires $\mathrm{C}, 76.2 ; \mathrm{H}, 4.9 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1690,1665$, 1645 and $1590 ; \delta_{\mathrm{H}}(100 \mathrm{MHz}) 1.66\left(\mathrm{~s}, 6 \mathrm{H}, 4-\mathrm{Me}_{2}\right), 6.43(\mathrm{~d}, 1 \mathrm{H}$, $J 10,2-\mathrm{H}), 6.82(\mathrm{~d}, 1 \mathrm{H}, J 10,3-\mathrm{H}), 7.65-7.90(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}$ and $7-\mathrm{H})$ and $8.05-8.20(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}$ and $8-\mathrm{H})$.

Reaction of Quinone 1 with 1-(E)-Methoxybuta-1,3-diene.-A solution of quinone $1(230 \mathrm{mg}, 1.13 \mathrm{mmol})$ and the diene (110 $\mathrm{mg}, 1.30 \mathrm{mmol}$) in dichloromethane ($10 \mathrm{~cm}^{3}$) was allowed to react at room temperature for 16 h . After this time, naphthalenone 32 , which precipitated as yellow crystals, was isolated by filtration (36 mg). The filtrate was evaporated under reduced pressure and chromatographed on silica gel [light petroleumethyl acetate (8:2)] to afford naphthalenone $32{ }^{10}$ (15 mg ; total $51 \mathrm{mg}, 19 \%$), anthracenone $31(125 \mathrm{mg}, 37 \%$) and anthracenetrione 28 ($62 \mathrm{mg}, 19 \%$).

Acknowledgements

Financial support from 'Consejo de Investigación en Ciencia y Tecnologia' (FONDECYT, Grants No. 88-316 and 92-603) and Ministerio de Educación y Ciencia de España are gratefully acknowledged. The authors thank Dr. Gert Eckhardt, Institut für Organische Chemie, Universität Bonn, for the high resolution mass spectrum.

References

1 Part 26, J. A. Valderrama and M. F. González, submitted to Heterocycles.
2 J. A. Valderrama, R. Araya-Maturana, M. F. González, R. Tapia, M. C. Paredes and F. Fariña, J. Chem. Soc., Perkin Trans. 1, 1991, 555.

3 R. Cassis, M. Scholz, J. A. Valderrama and R. Tapia, J. Chem. Soc., Perkin Trans. 1, 1987, 2855.
4 A. J. Fatiadi, Synthesis, 1976, 65.
5 F. B. H. Ahmad, J. M. Bruce, J. Khalafy, V. Pejanovic, K. Sabetian and I. Watt, J. Chem. Soc., Chem. Commun., 1981, 166.
6 R. Cassis and J. A. Valderrama, Synth. Commun., 1983, 13, 347.
7 S. C. Cooper and P. G. Sammes, J. Chem. Soc., Perkin Trans. 1, 1984, 2407.

8 I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley, New York, 1976.
9 (a) P. V. Alston, R. M. Ottenbrite and D. D. Shillady, J. Org. Chem., 1973, 38, 4075; (b) P. V. Alston, R. M. Ottenbrite, O. F. Guner and D. D. Shillady, Tetrahedron, 1986, 42, 4403.

10 C. G. Castro, J. G. Santos and J. A. Valderrama, J. Org. Chem., 1983, 48, 3026.

Paper 3/00689A
Received 3rd February 1993
Accepted 18th February 1993

